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Abstract— In this paper, the issue of chaos control and synchronization problems of two systems of fractional order with adaptive fuzzy 
sliding model has been addressed. According to Lyapunov stability theory and sliding mode control law, control will be extracted for system 
synchronization. Then, control signal is generated and with the signal of sliding surface (S) and changes of sliding surface (dS/dt), it is 
selected as data of a fuzzy neural network. After creating fuzzy system, this control system was designed as controller. Finally, numerical 
simulation of synchronization of two chaotic systems with fractional order and the robustness of this controller against disturbance noise 
and uncertainty are shown. 

Index Terms— chaos, fractional order systems, Lyapunov stability, sliding mode control, adaptive control, fuzzy control  
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1 INTRODUCTION                                                                     
 

ractional differential calculus relates back to about 300 
years ago. However, its applications in physics and engi-

neering have started in recent decades. Many systems in in-
terdisciplinary areas can be modeled by fractional order de-
rivatives [1]. Controlling and synchronizing chaotic systems 
have been one of the most interesting subjects in recent years 
and attracted scientists’ attention. For example, in [2], syn-
chronization of the integrated fractional order chaotic systems 
has been studied. [4] Presents control based on active sliding 
mode controllerfor synchronization of fractional order chaotic 
system. [5] Uses fractional Routh-Horowitz conditions for con-
trolling fractional order chaos in Duffing-VandePol system. In 
[6], a smart fractional sliding surface has been defined and a 
sliding controller has been studied for a nonlinear system. The 
new fractional order hyper-chaotic system has been presented 
in [7] and designed by placing pole for synchronizing a class 
of non-linear fractional order systems. [8] Studies the coordi-
nation between fractional order chaotic systems. A simple but 
efficient method has been presented in [9] for controlling the 
fractional chaotic system using T-S fuzzy model and an adap-
tive regulation mechanism. In [16] investigates the synchroni-
zation of coupled chaotic systems with many equilibrium 
points. By addition of an external switching piecewise-
constant controller, the system changes to a new one with sev-
eral independent  chaotic  attractors  in the state space. Then, 
by addition of a nonlinear state feedback control, 
the chaos synchronization is presented.in [17] in this paper, 
the synchronization problem for fractional-order chaotic sys-
tems is investigated. An adaptive observer-based slave system 
is designed to synchronize a given chaotic master system. 
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2. SYSTEMS WITH FRACTIONAL DERIVATIVES 

Despite of complications of differential calculus, recent 
advancements in chaotic systems and the close relationship 
between fractals and fractional calculus have grown interests 
in applying it. Fractional calculus has a wider range than 
correct derivative. If we use fractional order instead of correct 
order derivative or integral, we should use fractional calculus 
for solving derivative and fractional integral.  
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Derivative-integrator operator is shown by a tD α

. This op-
erator is a sign for taking derivative and fractional. 

Grunwald–Letnikov, Riemann–Liouville, and Caputo are 
definitions that are applied for fractional derivatives. 
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 Its Laplace transform is as follows: 

00 )()(0 ≤∫∞ =− ααα sFsdttftDste  
1 1( ) ( ) ( )0 0 0 00

1 (2)

nst k ke D f t dt s F s s D f tt t tk

n n N

α α α

α

−∞ − − −∑∫ = − ==

− < ≤ ∈  

                    2-3 

 
 

3. Problem Description  
 

Synchrony has a Greek root meaning to share the common 
time. The principle meaning of this word has been kept in 
ordinary application referring to settlement or affinity. 
Analysis of synchronization in dynamic systems has been 
a subject of considerable debate in physics as an important 
matter. The origin of this phenomenon relates back to 17th 
century when the second phase of pendulum clock hang-
ing from a point and there was a weak coupling between 
them coordinate with each other. Later on, other samples 
of such phenomena were also observed. Recently, studies 
have extended to chaotic systems. As we know, chaotic 
systems are sensitive to primary conditions. Because of 
this property, these systems oppose to synchronization by 
nature. Even two totally similar systems starting to work 
with trivial differences gradually lose their coordination 
over times.  

 
 
4. DESIGNING THE SLIDING MODE TO SYNCHRONIZE A 
CHAOTIC SYSTEM GENESIO_TESI WITH FRACTIONAL OR-
DER 

 
Consider a gensio tesi chaotic system with fractional 

order q (0 < q < 1). It is described by a fractional differen-
tial equation as follows: 
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System (4) is chaotic when a= 1.2, b= 2.92, c= 6,  

. 
 
 

 
Figure1.Chaotic attractor of x1-x2 

 
 

 
 

Figure2.Chaotic attractor of x1-x3 
 

 
 

Figure3.Chaotic attractor of x2-x3 
 

 

                                         

4-2   
1 2

2 3
2

3 1 2 3 1

1.2; 2.92; 6;

q

q

q

d x x
d x x

d x cx bx ax x
a b c

=

=

= − − − −
= = =  

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016                                                                                                     1662 
ISSN 2229-5518   

IJSER © 2016 
http://www.ijser.org 

Figure4.Response of X1 state 
 

 

 

 
Figure5.Response of X2 state 

 
 

 
Figure6.Response of X3 state 

 
Master system 
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Slave system 

4-4 
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Synchronization means finding the control signal of  

 to close the state of the follower system to the based 
state. To reach this goal, we can define the dynamic  error of 
coordination as follows: 
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We have eRiR = yRiR – xRiR and  
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To simplify, we substitute that the linear part of the follower 
system with Matrix A = AR2R.  
The main aim is to design controller    to have: 
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According to the method of designing active controller [6], the 
nonlinear part of dynamic error is eliminated by choosing the 
input vector: 
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The error of system (11) is rewritten as bellow: 
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The equation (16) describes the error dynamic by a new defini-
tion for the input of controller H (t). In active sliding mode 
controller, H(t) is developed based on sliding mode rules: 
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T
P is the fixed gain vector and  is the 

controller input which is defined as bellow: 
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S = s (e) is the switching surface where dynamics are placed in 
its favorable zone. As a result, dynamic error is: 

                                           
4-13 0
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t e
D e A Kw t= +

 
According to what was mentioned before, the good sliding 
controller is achieved based on developing the theory of slid-
ing mode control [10-5].  
 
5. Developing the Sliding Surface 

 
 
The sliding surface can be determined as bellows: 
  

                      5-1                 ( )s e Ce=  
C = [c1, c2, c3] is the fixed vector. By solving  , 

which is the required condition, the equivalent control is 
achieved. S € = 0 is a condition for the state curve to re-
main in the switching level. Thus, in sliding mode control-
ler, the two following conditions should be met: 
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6. Developing Sliding Mode Controller 
 

In designing the constant, we consider the relative 
convergent speed. Accordingly, the condition of reach-
ing is chosen as follows: 
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1
0 sgn( )q
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Sgn (.) is the sign function. Gains p> 0 and r > 0 are 
determined to meet the sliding conditions and the slid-
ing mode movement then occurs.  
According to equations 19 and 20  :  
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Now from equations 2-5 and 2-6, the input control is de-
termined: 

 

  [ ]1( ) ( ) ( ) sgn( )w t CK C rI A e p s−= − + +                  6-3 
 

  [ ]1( ) ( ( ) ( ) sgn( ) )u t K CK C rI A e p s G−= − + + −                    6-4 
 
 
7. Numerical simulation 
 
Here, the numerical simulation results obtained by MATLAB 
for chaotic systems with similar order gensio_tesi: 
 
7-1-Synchronization of two fractional order sys-
tems gensio_tesi 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.Response of x1 and y1 after imposing sliding mode 

control 
 
 
 

 
 

Figure 8.Response of x2 and y2 after imposing sliding mode 
control 
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Figure 9.Response of x3 and y3 after imposing sliding mode con-

trol 
 
 
From the conducted design in the first part, we receive some 
signals in the workplace and we use them as network data of 
adaptive Nero fuzzy. 

 
u1(t)=Control signal of first mode 
u2(t)=control signal of second mode 
u3(t)=control signal of third mode 
s(t)=sliding surface 
ds(t)=the changes of sliding surface 
 

5 vectors are stored in the workplace, the purpose of design-
ing is to design 3 is to design 3 fuzzy system by using ANFIS 
to replace u1(t), u2(t), u3(t). 
 
To train the first ANFIS, we should create a matrix as follow-
ing.  

                                         
7-1 

data [s ds u1]=     
 
In ANFIS training, the last column of  output must necessari-
ly be desired. 
From the existing data, we have used 70% of them as training 
data and 30% of them as test data. It is better that in selecting 
train data and test, we select them randomly and it means we 
should choose them randomly from the total data. 
 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 10. the response of x1 and y1 after imposing adap-

tive fuzzy control 

 
 

Figure 11. the response of x2 and y2 after imposing adaptive 

fuzzy control 

 

 
 

Figure 12. the response of x3 and y3 after imposing adaptive 

fuzzy control 

 
 

7-2-The effect of uncertainty: 
 
At this stage, we impose previous controller to the system 

with uncertainty. 
Uncertainty was assumed as follows: 
 
a a a= ± ∆  
 

%10a a∆ =   
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Figure 13. the response of x1 and y1 after imposing adaptive 

fuzzy control with uncertainty 

 
 Figure 14.  the response of x2 and y2 after imposing adaptive 

fuzzy control with uncertainty 

 
 

Figure 15.  the response of x3 and y3 after imposing adaptive 

fuzzy control with uncertainty 

 
In figures 13-14-15, the system response is shown with uncertain-

ty. As it can be seem from figures, fuzzy sliding mode controller is 

entered to system with uncertainty and it can do the synchroni-

zation, well. This means that this controller is resistant to the im-

posed uncertainty. 
 

7-3-The effects of disturbance: 
 
At this point, we logged an external chaos signal to system. 

D=0.2sint 

This chaos is imposed to the third mode of master system.    

3 * 1 * 2 * 3 1* 1 ;qX a x b x c x x x dd = − − − + +  
 
 
 

 

Figure 16. The response of x1 and y1 after imposing adaptive 

fuzzy control with chaos 

 

Figure 17. the response of x2 and y2 after imposing adaptive 

fuzzy control with chaos 
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Figure 18. the response of x3 and y3 after imposing adaptive 

fuzzy control with chaos 

The responses of system states are shown in figures 18-17-16. It 

can be seen that this controller is resistant to the external chaos 

and synchronization of these two fractional chaos systems is well 

down. 

7-4-Noise effect: 
At this point, we enter a noise signal to the system, entered noise 

is shown in figure 19.  

 
Figure 19.  Entered Noise to system 

This Noise is imposed to the third mode of master system. 

   3 * 1 * 2 * 3 1* 1 (t) q X a x b x c x x x Nd = − − − + +  ;                                   

0 simt t   

 
Figure 20. The response of x1 and y1 after imposing adaptive con-

trol fuzzy with noise 

 

 

Figure 21.  the response of x2 and y2 after imposing adaptive 

fuzzy control with noise 

 
Figure 22.  the response of x3 and y3 after imposing adaptive 

fuzzy control with noise 

 

According to figure 19, a white noise with maximum range of 0.2 

is logged into system, in figures 22-21-20, the system response is 

shown in presence of Noise.  

7-5-The effect of changing the initial conditions 
in the system: 
Designed controller is designed for the initial conditions, now we 

select the initial conditions of two systems as follows and we 

measure the effect of these factors on response.  

X0=(1,-0.2,0.6) 

Y0=(0.2,0.3,0.2) 
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Figure 23.  The response of x1 and y1 after imposing adaptive 

fuzzy control with changing initial conditions 

 

 
Figure 24.  the response of x2 and y2 after imposing adaptive 

fuzzy control with changing initial conditions 

 
Figure 25.  the response of x3 and y3 after imposing adaptive 

fuzzy control with changing initial conditions 

 
7-6-The effect of Non-sinusodial effect: 
At this stage, one external chaos is entered as figure 26 to system. 

 
Figure 26.  non-sinusodial effect imposed to system 

 

 

 
Figure 27. the response of x1 and y1 after imposing adaptive 

fuzzy control with non-sinusodial chaos 

 

 

Figure 28.  the response of x2 and y2 after imposing adaptive 

fuzzy control with non-sinusoidal chaos 
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Figure 29.  the response of x3 and y3 after imposing adaptive 

fuzzy control with non-sinusoidal chaos 

 

 

To compare, the performance of this controller in different 

situations, the following criteria is used for evaluation. 

2

1

1 ( )
N

i
MSE e i

N =

= ∑
  

MSE3 MSE2 MSE1  

0.1723 0.0054 0.0068 Fuzzy 

0.1736 0.0056 0.0080 Changing initial 

conditions 

0.5064 0.0156 0.0017 Uncertainty 

0.7427 0.0160 0.0163 Non-sinusoidal dis-

turbance 

0.7464 0.0158 0.0161 Disturbance 

0.9142 0.0195 0.0163 Noise 

  
Conclusion: 
In this paper, chaos systems synchronization of fractional or-

der is investigated by adaptive fuzzy control method. Accord-

ing to Lyapunove stability and control theory of sliding mode, 

a controller is designed for stabilization and synchronization 

of fractional order chaotic systems. In simulation, initial condi-

tions of X(0)=(0.1, -0.2, 0.2) and Y(0)=(1, -0.2, 0.6) and q=0.95 

and c=6 and b=2.92 and a=1.2 are included. Simulation results 

are reported of the utility of this method for synchronization 

of chaotic and fractional order systems. The proposed control-

ler shows an appropriate response against chaos and uncer-

tainty 
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